domingo, 29 de marzo de 2009

demOstraciiones fOrmales

DEMOSTRACIÓN FORMAL:
Una demostración formal consiste en mostrar que la conclusión puede derivarse desde las premisas mediante la aplicación de las
reglas de inferencia. Para probar que el argumento mostrado más arriba es válido usted necesita dos únicas reglas de inferencia. 1. Silogismo hipotético [HS] 2. Modus Tollens [MT] Un desglose detallado de la demostración formal, para el problema mostrado más arriba, es el siguiente: Paso 1: Desde la línea 1 y la linea 2 nosotros podemos derivar T > L por (HS). HS P > Q (1) T > H Q > R (2) H > L - - ------ ---------- P > Q T > L Usted indica este nuevo paso en la demostración formal añadiendo una cuarta línea justificada con los números de las lineas a las que afectó la aplicación de la regla del HS: 1. T > H 2. H > L 3. ~L /~T 4. T > L 1, 2 (HS) Paso 2: Despues podemos usar la regla del Modus Tollens (MT) para derivar ~T desde líneas 3 y 4. T > L ~L ------ ~T Usted indica este nuevo paso en la demostración formal, añadiendo una quinta linea justificada con los números de las lineas a las que afectó la aplicación de la regla del MT: 1. T > H 2. H > L 3. ~L /~T 4. T > L 1, 2 (HS) 5. ~T 3, 4 (MT) La demostración formal es completa una vez usted ha derivado una línea que es la conclusión.

lOgiiqa cuantificacional.

Hay argumentos que pueden ser formalizados y resueltos mediante los mecanismos que nos proporciona la lógica de enunciados. sin embargo, existen otros muchos enunciados, que aún siendo elementales no pueden ser resueltos por la lógica de enunciados. Por ejemplo:

- Todo griego es europeo

- Todo ateniense es griego

________________________

- Todo ateniense es europeo

Este argumento es formalmente válido, sin embargo, las estructuras lógicas que lo justifican no son las que se utilizan en la lógica de enunciados, y esto lo podemos observar porque si asignamos una letra proposicional a cada uno de los enunciados, la formulación resultante no resultaría convincente:

-p, q ^ r

Por que no hay ninguna ley de la lógica proposicional que permita concluir ' r' partiendo de las premisas 'p' y 'q'. Esto sucede porque la forma lógica de este argumento no puede ser captada con los medios de la lógica de enunciados. Para captar la forma lógica de estos argumentos es necesario penetrar en la estructura interna de los predicados. Así, en el caso anterior, la pieza clave de la estructura que justifica su validez la forman las palabras "todo" y "algún". Estos términos rebasan el ámbito de la lógica de enunciados.
La Lógica Cuantificacional o Lógica de Predicados, a diferencia de la lógica proposicional, se interna en las proposiciones y las examina por dentro. Esto no quiere decir que la lógica cuantificacional abandone la lógica proposicional. La lógica no puede considerarse como un conjunto de cálculos desperdigados o un conjunto de cálculos superpuestos unos encima de otros de forma que unos sean la negación de los demás. La lógica es más bien una acumulación organizada de cálculos donde cada uno de los cuales supone la integración de los anteriores en un sistema más amplio.

El análisis de la lógica cuantificacional descubre en los enunciados dos cosas fundamentales:

bullet

Expresiones que se refieren a individuo

bullet

Expresiones que refieren a propiedades

bullet

Expresiones que atribuyen propiedades a individuos.[Cuantificadores]

descripciiOn de elementOs de un argumentO

La argumentación.
  • Argumentar significa defender una idea o una opinión aportando un conjunto de razones que justifiquen nuestra postura.

  • La capacidad para argumentar correctamente suele ir emparejada con la capacidad de influir sobre las personas y es un reflejo de la organización del pensamiento.

  • En toda argumentación podemos distinguir 3 elementos:

  • El objeto, es el tema sobre el cual se argumenta.

  • La tesis, el la postura q el argumentador tiene respecto al tema.

  • Los argumentos, son las razones en las que basamos nuestra postura ante el tema.

valiidez lOgiiqa

Se dice que algo tiene validez lógica porque tiene, y se le reconoce, la cualidad de poseer un valor determinado, o bien la capacidad o eficacia para realizar el valor que se supone ha de tener.

La validez de un cuchillo reside en su cualidad para realizar el valor, la utilidad de "cortar". Cuanto más y mejor corte, mejor realiza el valor que se le supone, su validez.

Respecto a la ciencia y a la filosofía, el valor de referencia es la verdad que, respecto a la validez, adquiere dos sentidos, epistemológico uno y lógico el otro.

tabla de verdad

es una herramienta desarrollada por Charles Peirce en los años 1880, siendo sin embargo más popular el formato que Ludwig Wittgenstein desarrolló en su Tractatus logico-philosophicus, publicado en 1921.

Se emplean en lógica para determinar los posibles valores de verdad de una expresión o proposición molecular. O si un esquema de inferencia, como argumento, es formalmente válido mostrando que, efectivamente, es una tautología.

Considerando dos proposiciones A y B, cada una como un todo (sea como proposición atómica o molecular) y asimismo cada una con sus dos posibles valores de verdad V (Verdadero) y F (Falso), y considerando su relación "$" como variable de cualquier relación sintáctica posible que defina una función de verdad, podrían suceder los casos siguientes:

NOTA: Las proposiciones A, B, C,.... mayúsculas simbolizan cualquier proposición, atómica o molecular, por lo que propiamente son expresiones metalingüísticas respecto al lenguaje objeto de la lógica proposicional, generalmente simbolizadas con minúsculas p, q, r, s... como proposiciones atómicas.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B A$B A$B A$B A$B A$B A$B A$B A$B A$B A$B A$B A$B A$B A$B A$B A$B
V V V V V V V V V V F F F F F F F F
V F V V V V F F F F V V V V F F F F
F V V V F F V V F F V V F F V V F F
F F V F V F V F V F V F V F V F V F


Las dos primeras columnas de la tabla nos muestran los cuatro casos de combinación posibles según el valor de verdad de A y de B. Tenemos por tanto 4 líneas, y 16 columnas que representan todos los posibles valores que pueden darse según se defina una función de verdad cualquiera.

De esta forma podemos conocer mecánicamente, es decir mediante algoritmo, el valor de verdad de cualquier conexión lógica, siempre y cuando previamente la hayamos definido como función de verdad.

Se hace necesario definir todas las relaciones establecidas por las conexiones en valores de verdad.

  • Negación (¬),(~)

Consiste en cambiar el valor de verdad de una variable proposicional.

A \lnot A
V F
F V
  • Conjunción \land

La proposición molecular será verdadera sólo cuando ambas variables proposicionales sean verdaderas.(Columna 8 de la tabla de funciones posibles)

A B A \land B
V V V
V F F
F V F
F F F
  • Disyunción \lor

La proposición molecular será verdadera cuando una o ambas variables proposicionales sean verdaderas.(Columna 2 de la tabla de funciones posibles)

A B A \lor B
V V V
V F V
F V V
F F F
  • Condicional (→)

La proposición molecular será verdadera cuando se cumpla si es verdadero A entonces lo es B. (Columna 5 de la tabla de funciones posibles)

A B A \rightarrow B
V V V
V F F
F V V
F F V
  • Bicondicional (↔, si y sólo si)

La proposición molecular será verdadera cuando ambas variables proposicionales tengan a la vez el mismo valor de verdad. (Columna 7 de la tabla de funciones posibles)

A B A \leftrightarrow B
V V V
V F F
F V F
F F V
  • Disyunción exclusiva \bar {\lor}

La proposición molecular será verdadera sólo cuando una de las dos variables proposicionales sea verdadera, pero no las dos. (Columna 10 de la tabla de posibles valores)

A B A \bar \lor B
V V F
V F V
F V V
F F F

Tablas de verdad [editar]

Las tablas nos manifiestan los posibles valores de verdad de cualquier proposición molecular, así como el análisis de la misma en función de las proposicíones que la integran, encontrándonos con los siguientes casos:

Verdad Indeterminada o Contingencia [editar]

Se entiende por verdad contingente, o verdad de hecho, aquella proposición que puede ser verdadera o falsa, según los valores de las proposiciones que la integran. Sea el caso: A /\ (B \/ C).

Su tabla de verdad se construye de la siguiente manera:

Ocho filas que responden a los casos posibles que pueden darse según el valor V o F de cada una de las proposiciones A, B, C. (Columnas 1, 2, 3)

Una columna (Columna 4) en la que se establecen los valores de B \/ C aplicando la definición del disyuntor a los valores de B y de C en cada una de las filas.(Columnas 2,3 → 4)

Una columna (columna 5) en la que se establecen los valores resultantes de aplicar la definición de la conjunción entre los valores de A (columna 1) y valores de la columna B \/ C, (columna 4) que representarán los valores de la proposición completa A /\ (B \/ C), cuyo valor de verdad es V o F según la fila de los valores de A, B, y C que consideremos. (Columnas 1,4 → 5)


1 2 3 4 5
A B C B\/C A/\(B\/C)
V V V V V
V V F V V
V F V V V
V F F F F
F V V V F
F V F V F
F F V V F
F F F F F

Donde podemos comprobar cuándo y por qué la proposición A/\(B\/C) es V y cuándo es F

Contradicción [editar]

Se entiende por proposición contradictoria, o contradicción, aquella proposición que en todos los casos posibles de su tabla de verdad su valor siempre es F. Dicho de otra forma, su valor F no depende de los valores de verdad de las proposiciones que la forman, sino de la forma en que están establecidas las relaciones de unas con otras. Sea el caso: [(A/\B)/\¬(A\/B)]/\C

Procederemos de manera similar al caso anterior. Aplicamos (Columna 4) la definición de conjuntor a los valores de A y B.(columnas 1,2 → 4) Después aplicamos la definición de disyuntor a los valores de A y B. (columnas 1,2 → 5) Aplicamos en la columna siguiente (Columna 6) el negador a los valores de la columna anterior. Aplicamos el conjuntor a los valores de la columna (A/\B)(Columna 4) con los de la columna ¬(A\/B).(Columna 6) Por último (Columna 8) aplicamos el conjuntor a los valores de la columna de C (Columna 3) con la columna última (Columna 7)cuyo resultado nos da los valores de [(A/\B)/\¬(A\/B)]/\C, siempre falsos cualquiera que sea la fila que consideremos.

1 2 3 4 5 6 7 8
A B C A/\B A\/B ¬(A\/B) (A/\B)/\¬(A\/B) [(A/\B)/\¬(A\/B)]/\C
V V V V V F F F
V V F V V F F F
V F V F V F F F
V F F F V F F F
F V V F V F F F
F V F F V F F F
F F V F F V F F
F F F F F V F F

Tautologías [editar]

Se entiende por proposición tautológica, o tautología, aquella proposición que en todos los casos posibles de su tabla de verdad su valor siempre es V. Dicho de otra forma, su valor V no depende de los valores de verdad de las proposiciones que la forman, sino de la forma en que están establecidas las relaciones sintácticas de unas con otras. Sea el caso: [(A→B)/\(B→C)] →(A→C)

Siguiendo la mecánica algorítmica de la tabla anterior construiremos su tabla de verdad:

A B C A→B B→C (A→B)/\(B→C) (A→C) [(A→B)/\(B→C)] →(A→C)
V V V V V V V V
V V F V F F F V
V F V F V F V V
V F F F V F F V
F V V V V V V V
F V F V F F V V
F F V V V V V V
F F F V V V V V

Tablas de verdad, proposiciones lógicas y argumentos deductivos [editar]

Artículo principal: Cálculo
Artículo principal: Cálculo lógico

En realidad toda la lógica está contenida en las tablas de verdad, en ellas se nos manifesta todo lo que implican las relaciones sintácticas entre las diversas proposiciones.

No obstante la sencillez del algoritmo, aparecen dos dificultades.

  • La gran cantidad de operaciones que hay que hacer para una proposición con más de 4 variables.

Esta dificultad ha sido magníficamente superada por la rapidez de los ordenadores, y no presenta dificultad alguna.

  • Que únicamente será aplicable a un esquema de inferencia, o argumento cuando la proposición condicionada, como conclusión, sea previamente conocida, al menos como hipótesis, hasta comprobar que su tabla de verdad manifiesta una tautología.

Por ello se construye un cálculo mediante cadenas deductivas:

Las proposiciones que constituyen el antecedente del esquema de inferencia, se toman como premisas de un argumento.

Se establecen como reglas de cálculo algunas tautologías como tales leyes lógicas, (pues garantizan, por su carácter tautológico, el valor V).

Se permite la aplicación de dichas reglas como reglas de sustitución de fórmulas bien formadas en las relaciones que puedan establecerse entre dichas premisas.

Deduciendo mediante su aplicación, como teoremas, todas las conclusiones posibles que haya contenidas en las premisas.

Cuando en un cálculo se establecen algunas leyes como principios o axiomas, el cálculo se dice que es axiomático.

El cálculo lógico así puede utilizarse como demostración argumentativa.

Aplicaciones [editar]

Lógica de circuitos

La aplicación más importante de las tablas de verdad procede del hecho de que, interpretando los valores lógicos de verdad como 1 y 0 en el sentido:

Valor 1: corriente eléctrica

Valor 0: ausencia de dicha corriente.

Los valores de entrada o no entrada de corriente a través de un diodo puede producir una salida 0 o 1 según unas condiciones definidas como función según las tablas definidas anteriormente.

Así se establecen las siguientes funciones: AND, NAND, OR, XOR NOR, que se corresponden con las funciones definidas en las columnas, 8, 9, 2, 10 Y 15 respectivamente, y la función NOT.

En lugar de variables proposicionales consideramos gráficamente los posibles input como EA, EB, y los correspondientes outputs de SALIDA como 1, 0.

NOT


EA EB
1 0
0 1


EA EB AND NAND OR XOR NOR
1 1 1 0 1 0 0
1 0 0 1 1 1 0
0 1 0 1 1 1 0
0 0 0 1 0 0 1


Esta aplicación hace posible la construcción de aparatos capaces de realizar estas computaciones a velocidades increíbles, llamadas por lo mismo computadoras u ordenadores.

El desarrollo de estos circuitos y su estructuración merece verse en el artículo puerta lógica.


La Tabla de la verdad es una herramienta imprescindible en la recuperación de datos en las bases de datos como Internet con los motores de búsqueda o en una biblioteca con sus ficheros informatizados. Asimismo se utilizan para programar simulaciones lógicas de inteligencia artificial con lenguajes propios. También en modelos matemáticos predictores: meteorología, marketing y otros muchos.

reglas siintactiicas

La Sintáctica corresponde al análisis de la relación existente entre los distintos símbolos o signos del lenguaje.

Reglas Sintácticas
Son los métodos de produccion de sentencias o instrucciones válidas que permitir y dan formar a un programa. las reglas sintácticas permiten reconocer si una cadena o serie de símbolos es correcta gramaticalmente y a su vez información sobre su significado o semántica.

lenguaje siimbOliiqo de la lOgiiqa prOfesiional

En la práctica, no es posible razonar directamente mediante conocimientos en un estado mental, sino por medio de representaciones simbólicas, que se expresan en objetos materiales perceptibles por medio de los sentidos, tales como palabras, signos, gráficos, fórmulas, etc.

El uso del lenguaje corriente lleva implícito un enfoque de sintaxis, que consiste en las relaciones formales entre los términos empleados; y un enfoque semántico, que consiste en el sentido de referencia que se atribuye a las palabras empleadas, su relación con los objetos y los conceptos de la realidad a que con su empleo se trata de aludir, y que es cierto modo es socialmente cambiante dentro de un mismo idioma, considerando distintos tiempos y lugares.

El lenguaje de uso corriente - tanto el coloquial como el culto, literario o el de ciertas disciplinas especializadas - resulta totalmente imperfecto en cuanto al rigor, claridad, abstracción y precisión requerido para la expresión de los conceptos y objetos en los estudios lógicos; especialmente considerando lo expuesto en cuanto a la prescindencia de los componentes de contenidos materiales de los procesos del razonamiento.

En función de ello, la lógica formal procura liberarse de la incidencia que, en cuanto al examen de las cuestiones formales del razonamiento, pueda tener el uso de términos de los lenguajes idiomáticos, creando para ser aplicado en el estudio y exposición de las leyes lógicas, un lenguaje simbólico propio, un lenguaje formal.

Este lenguaje simbólico propio de la lógica, tiene por otra parte la ventaja de su universalidad; en cuanto al prescindir del empleo de expresiones de un idioma real, permite su comprensión directa independientemente del idioma concreto de la persona que se aplique a su estudio.

Ese lenguaje simbólico es además lo que se denomina un metalenguaje, en el sentido de que se lo concibe como una forma de expresión que está “más allá” del uso mismo del lenguaje. En este sentido, se dice que el lenguaje-objeto es el que se utiliza, en tanto que el metalenguaje es aquel con el que se habla del otro; como cuando se aprende un idioma extranjero utilizando para ello el idioma propio.

Una expresión sencilla del lenguaje simbólico aplicable al análisis lógico puede ser similar al aplicado en matemáticas para representar una variable. De esta forma,

un silogismo simple como:

Todos los hombres son mortales
Sócrates es hombre,
entonces Sócrates es mortal

puede expresarse bajo la forma:

Si A es B
y C es A
entonces C es B

De esta manera, la sustitución de una proposición por un síimbolo permite construir una teoría de las formas del razonamiento en las cuales intervengan componentes similares; de modo que sea posible reconocer facilmente en un proceso de razonamiento la presencia de una misma proposición, de un mismo concepto, o de una misma propiedad o atributo.

El símbolo que se emplea para representar una proposición se designa como variable proposicional; pero debe distinguirse muy cuidadosamente de lo que constituye un símbolo de variables en otras disciplinas, como el álgebra o los lenguajes informáticos de programación:

cOnectiivas lOgiiqas

CONECTIVAS LÓGICAS

Se definen básicamente 5 elementos cuyos propósitos son enlazar las proposiciones simples o atómicas:

La CONJUNCIÓN
La conjunción se representa por v y se lee y.


La DISYUNCIÓN
Se divide en disyunción inclusiva que se representa por w y se lee o; o también se lee como uno u otro o ambos. La disyunción exclusiva se representa por ¹ y se lee como O exclusiva, o también como uno u otro pero no ambos.


CONDICIONAL
Se representa por medio de una flecha 6 y se lee si.....entonces.....

BICONDICIONAL: Se representa por º o ø (relación de equivalencia) y se lee .....si y sólo si....., o también como condición necesaria y suficiente.

NEGACIÓN
Se lee como no, es falso que, no es verdad que; y hay muchas formas de representarlo (', $ ,...)

elementOs del calculo prOposiiciiOnal

jueves, 26 de marzo de 2009

falaciia de ambigüedad

se cometen cuando se utilizan terminos en diferentes sentidos en las premisas

DEFINICION

[el equívoco*]
se comete cuando el termino que utiliza tiene 2 significados en cada una de las premisas

[la anfibiología*]
se cometen cuando el enunciado es confuso e impreso
-el que quiere entrar debe salir
-la entrada es gratis, en la salida pagas

[division del sentido compuesto y sentido dividido*]
la conclusion nos conduce a que las partes de un todo sea verdadero o cuando solamente de las premisas tomadas o vicerversa

defiiniciOn de las falacias de atinencia

APELACION A LA FUERZA [ad baculum]
se apela a la fuerza de una autoridad o persona capaz de confirmar la razon

A LA PERSONA [ad hominem]
se anhela el racismo es una violencia ya que discrimina

LLAMADO A LA PIEDAD [ad misercordiam]
los judios que controlan el gobierno no controlan la tierra y sufriran la 2° GM

PETICION DE PRINCIPIO [petitio principi]
se toma la premisa que se quiere robar

APELACION A LA AUTORIDAD [ad verecundiam]
un grupo de cientificos dice que el atomo es indispensable

POR LO QUE TODO EL PUEBLO DICE [ad populum]
si todos mis amigos no ponen atencion, no me preocupare por poner atencion

falaciia de atenenciia

ESTABLECE QUE ES UNA FALACIA DE ATENENCIA
se cometen cuando por razones psicologicas se debe al sentido que une la prueba

diferencia entre las falacias fOrmales e iinformales

FALACIAS FORMALES
se comete cuando no se cumplen las reglas establecidas para los silogismos

FALACIAS INFORMALES
se cometen intencionalmente cuando no se aplican correctamente a las reglas

nOciion de falaciia

NOCION DE FALACIA
proviene del vocablo "fallere" y quiere decir organo, es la expresion de un razonamiento falso o incorrecto que tiene apariencia de verdad o correccion

TIPOS DE FALACIAS

SOFISMA
cometida voluntariamente con el de engañar al interlocutor

PARALOGISMO
la falacia que se comete por el descuido de aplicacion de reglas sin intencion de engaño


siilogismOs compuestOs

HIPOTETICO
se presenta la PM como condicion
EJEMPLO: si estudias pasaras, pasaste por lo tanto estudiaste

DISYUNTIVO
la PM es la disy. niega y afirma otro
EJEMPLO: estas enfermo o sano, no estas enfermo estas sano

DILEMA
aquel en el que las consecuencias nos llevan a la misma conclusion
EJEMPLO: o tu mal tiene remedio o no lo tiene, si tiene de que te preocupas si no tambien

defiinciiOn de los siilogiismos iiregulares

es en el cual no aparece una de las premisas o una conclusion

ENTINEMA
no aparecen las 2 premisas o la conclusion
EJEMPLO: todo oso es plantigrado por lo tanto, el osesno es plantigrado

EPIQUEREMA
es el silogismo en el que una de las 2 premisas van acompañadas de su correspondiiente demostracion
EJEMPLO: todo periodista es veraz, porque su vida tiene sentido solo cuando busca la verdad, Carmen Aristegui es periodiosta por lo tanto Carmen Aristegui es veraz.

POLISILOGISMO
es el silogismo en el que se unen por una conclusion, la conclusion se convierte en la premisa mayor del segundo y asi sucesivamente
EJEMPLO: todo hombre es justo, todo juez es justo. Ningun crimial es justo, todo criminal es perverso por lo tanto alguien perverso no conoce el derecho.

SORITES
es el silogismo en el que el predicado de la primera premisa pasa a ser sujeto de la segunda
EJEMPLO: toda flor es vegetal, todo vegetal es ser vivo por lo tanto toda flor se alimenta


fiiguras y los modos del silogismo

FIGURAS
son las formas que adopta el silogismo de acuerdo al TM

MODOS
son los 4 tipos de figuras que existen entre los terminos del silogismo

reglas del silogismo

REGLAS DE LOS TERMINOS
1. el silogismo consta de 3 terminos y solo de 3
2. el termino medio jamas pasa a conclusion
3. ningun termino debe de tener > ext. a la conclusion
4. el termino medio debe ser universal

REGLAS DE LOS ENUNCIADOS
5. de 2 premisas particulares no se obtiene una conclusion
6. de 2 premisas negativas no se obtiene una conclusion
7. de 2 premisas afirmativas no se obtiene una conclusion
8. la conclusion siempre sigue la parte mas debil [negativo]

siilOgismo

es el racinio deductivo mediante el cual las premisas enlazan 2 terminos con un terciario y la conclusion expresa la relacion de estos entre si

clases de inferenciias mediatas

DEDUCCION
razonamiento que va de lo general a lo particular, la forma mas comun de deduccion es el simbolismo

INDUCCION
razonamiento que va de las particulares a los generales
-parcial: enumeracion de algunas partes del todo
-total: enumeracion de la totalidad de las partes

ANALOGIA
razonamiento en el que la conclusion tiene el mismo grado de generalidad y particularidad de sus premisas

ESTADISTICA
metodo deductivo de toma de decisiones frente a la incertidumbre, calculo de probabilidad

inferenciia mediiata

INFERENCIA MEDIATA
son las que llegan a una conclucion a traves de 20 o mas propocisiones

inferenciia inmediiata

INFERENCIA INMEDIATA
son las que a traves de una sola proposicion lleguemos a una conclusion a traves de suposiciones

cOnteniido y fOrma de argumentOs

FORMA
modo o estructura inmaterial de un objeto

CONTENIDO
todo aquello que se compone un objeto

razOnamiiento

RAZONAMIENTO
proceso donde relacionamos juicios entre si convicto e inconvicto, valido e invalido con 1 conclusion

ELEMENTOS DEL RAZONAMIENTO DEDUCTIVO
concepto o termino
proposiciones
conclusiones

juiciiO

JUICIO
relaciiOn entre cOnceptos verdaderOs y falsOs


explica cOmo se distingue que es un pensamiento es juicio o no lo es
- porque en un juicio es juzgar en lo que afirmamos o negamos por su cualidad, cantidad, etc ...

prOcesos iintelectuales

PERCEPCION
La percepción es la función
psíquica que permite al organismo, a través de los sentidos, recibir, elaborar e interpretar la información proveniente de su entorno.

ABSTRACCION

La abstracción encarada desde el punto de vista de la programación orientada a objetos expresa las características esenciales de un objeto, las cuales distinguen al objeto de los demás. Además de distinguir entre los objetos provee límites conceptuales. Entonces se puede decir que la encapsulación separa las características esenciales de las no esenciales dentro de un objeto. Si un objeto tiene más características de las necesarias los mismos resultarán difíciles de usar, modificar, construir y comprender.

La misma genera una ilusión de simplicidad dado a que minimiza la cantidad de características que definen a un objeto.

GENERALIZACION

es un elemento fundacional de la lógica y el razonamiento humano. Es la base esencial de toda inferencia deductiva válida. El concepto de generalización tiene amplia aplicación en muchas disciplinas, a veces teniendo un significado especializado según el contexto.

Dados con conceptos relacionados, A y B, el concepto A es una generalización del concepto B si y sólo si:

  • cada instancia del concepto B es también una instancia del concepto A; y
  • existen instancias del concepto A que no son instancias del concepto B.

En forma equivalente, A es una generalización de B si B es una especialización de A.

Por ejemplo, animal es una generalización de ave porque toda ave es un animal, y hay animales que no son aves (perros, por ejemplo).


Este tipo de generalización versus especialización se refleja en cualquiera de las palabras contrastantes del par de palabras hiperónimo e hipónimo. Un hiperónimo se refiere a un tipo o grupo de cosas del mismo nivel, tal como árbol lo es para ocre; o barco lo es para crucero. Por otro lado, un hipónimo es un conjunto de palabras que están dentro del hiperonimo, tal como margarita se incluye en flor, y ave y pez en animal. Un hipernónimo es superordinado a un hipónimo, y un hipónimo es subordinado a un hipernónimo.




cOncepto

Un concepto es una unidad cognitiva de significado, una idea abstracta o mental que a veces se define como una "unidad de conocimiento".

Los conceptos son construcciones u imágenes mentales, por medio de las cuales comprendemos las experiencias que emergen de la interacción con nuestro entorno, a través de su integración en clases o categorías relacionadas con nuestros conocimientos previos.

La formación del concepto está estrechamente ligada al contexto; esto significa que todos los elementos, incluyendo lenguaje y cultura, y la información percibida por los sentidos que sea accesible al momento en que una persona construye el concepto de algo o alguien, influyen en la conceptualización. El conocimiento de la experiencia siempre es concreto, tiene una referencia a una cosa, una situación o algo que es único e irrepetible; la experiencia siempre es subjetiva.

princiipiiO logiico

hay que entender los principios que gobiernan el entendimiento humano entero, cualesquiera que sean los objetos a los que aplica su actividad; eso es lo que se llama también los principios directores del conocimiento. Aunque estos principios no sean en realidad sino una expresión particular, para las condiciones del entendimiento humano, de los principios propiamente dichos, que son de orden verdaderamente universal, debemos limitarnos aquí a considerarlos bajo el aspecto lógico; pero, para estudiarlos de un modo completo, habría evidentemente que salir de ese punto de vista lógico y situarse en el punto de vista metafísico. Por otra parte, estos principios lógicos, cuando se los quiere enunciar, son forzosamente expresados bajo la forma de juicios, y la constitución misma del lenguaje no permite que sea de otra manera; pero no obstante, si se los considera en sí mismos, fuera de toda aplicación a la experiencia, hay que estudiarlos antes del juicio, e incluso antes del concepto, pues un concepto, lo mismo que un juicio o un razonamiento, no puede tener valor lógico sino en tanto es conforme a estos principios, a los que se puede contemplar como las condiciones fundamentales del acuerdo del pensamiento consigo mismo, porque son la traducción lógica de las condiciones mismas de toda posibilidad.

pensamiientO lOqiico

es un proceso de adquisición de nuevos códigos que abren las puertas del lenguaje y permite la comunicación con el entorno, constituye la base indispensable para la adquisición de los conocimientos de todas las áreas académicas y es un instrumento a través del cual se asegura la interacción humana, De allí la importancia del desarrollo de competencias de pensamiento lógico esenciales para la formación integral del ser humano.

objetO fOrmal

También llamada lógica pura - que es la lógica propiamente dicha - es precisamente la “ciencia” (en cuanto conocimiento) que determina cuáles son las formas correctas y válidas de los raciocinios; pero lo hace considerándolos en sí mismos y con prescindencia de los contenidos concretos de los razonamientos, es decir, considerando esos contenidos como entes lógicos abstractos, de tal manera que las leyes a aplicar tengan validez para cualquier contenido concreto.

objetO materiial

también llamada lógica aplicada, es aquella en que un proceso de raciocinio o de pensamiento se analiza en consideración al contenido real de sus premisas, y por lo tanto debe conducir a una verdad material, una conclusión que sea concordante con la realidad.

Mientras que las premisas (o predicados) que toma en consideración la lógica pura constituyen entidades abstractas y absolutamente precisas, respecto de las cuales no es requerido que exista ningún objeto de la realidad que los verifique; es difícil encontrar en la realidad conceptos de origen empírico-sensible que presenten exactamente las características de los objetos lógicos.

lOgiiqa fOrmal

La lógica formal, a diferencia de la lógica informal, se dedica al estudio de los razonamientos correctos, desarrollándolos de manera formal y esquematizada, es decir de una forma no cotidiana. Este tipo de lógica parte de los razonamientos correctos conocidos para desarrollar una teoría lógica y consecuentemente, razonamientos más complejos que no se utilizan normalmente en la vida cotidiana. A partir de la idea de que quien la estudia "razona bien", puede desarrollar argumentos racionales extremadamente complejos, y de gran alcance. Este tipo de lógica no debe ser confundido con la lógica simbólica ni con la lógica matemática, que son tipos de lógica que se encuentran dentro del campo de la lógica formal.